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A C-µTesla Protocol for Sensor Networks

Abstract

A sensor network has one or more base stations that talk to a large set of sensors, where the 

sensor life depends a small battery that consumes most power during communication.  Before this 

network can be applied, many security  problems must be solved, yet traditional security  protocols 

usually  need a lot of communication overhead.  Recently, the µTesla protocol was proposed to 

address the authentication problem which ensures that no adversaries can impersonate the legal 

sender to control the sensors. The protocol adds a 24-bytes MAC (Message Authentication Code) 

to each 30-bytes message, where the MAC is based on the symmetric technique but can achieve 

the asymmetric property.  The protocol is applied to a general case that a sensor can either compute 

the MAC to authenticate the message or just skip the MAC to see the message content.  

In this paper, we propose a C-µTesla protocol for a specific case where a sensor wants to 

authenticate all messages.  We reduce the overhead from 30 bytes to 4 bytes, by asking the sender 

to encrypt all messages without creating any MACs, so that a sensor authenticate messages through 

decryption.  And each message adds a 4-bytes Cyclic Redundancy Check (CRC) before encryption, 

so that a modified encrypted message will not pass the CRC after decryption.  Moreover, the C-

µTesla protocol introduces a new confidentiality property that allows no adversaries to hear 

information of the sender through putting a fabricated sensor.

keywords. sensor network, security, protocol

1. Introduction
A sensor network has a large set of tiny sensors.  These sensors form a routing forest with a 

base station at the root  of each tree.  Each sensor routes its sensed data to the base station which 

interfaces an outside network.  The base station can either route commands to a sensor or broadcast 

them to all sensors.  Some sensors can broadcast data to its nearby sensors, though it is within a 

limited range.  In the future, such a network may be used for emergency response, energy 

management, medical monitoring, logistics and battlefield management.  Currently, a prototype 

system has been implemented at UC Berkeley for heating and air-condition control.  However, 

many feasible protocols must be proposed before the sensor network can be widely used [8].
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Authentication protocols are very  important in the sensor network [7].  Sensors depend on 

them to confirm that received messages are broadcasted from the legal sender (e.g., the base 

station);  otherwise, an adversary may  fabricate messages to control sensors.  However, each 

sensor is a cheap  and small-battery-powered device that has very limited computation and 

communication resources.  For example, the sensor developed by the SmartDust Project of UC 

Berkeley has a 8-bit and 4-MHz CPU, 4.5 kbytes free memory space and 10 kbps bandwidth.  As a 

result, each message cannot be authenticated by  the asymmetric digital signature [7], because it 

needs a communication overhead of 50-1000 bytes per message as well as a large computation 

time for creating and verifying the signature [5].  Nor can it be authenticated by  the symmetric 

method of Genario and Rohatgi [3] which reduces the computation time but keeps the 

communication overhead at 1000 bytes per message.  In the sensor network, the life time of a 

sensor depends on a small battery  where most power is consumed during communication.  Thus, 

reducing the communication overhead is much more concerned than reducing the computation 

time.  Rohatgi improves the method of [3] to use only 300 bytes per message [9], yet such an 

overhead is still unacceptable in the sensor network.  

Recently, the Tesla protocol has been proposed for authenticating a sequence of messages 

with a light communication overhead [5].  The sender splits up  the time into uniform intervals and 

prepares a key for each interval.  This chain of keys (i.e., key chain) is constructed backwardly 

through a one-way function [2].  That is, the last key  is picked randomly, and the j-th key is 

computed from the (j+1)-th key by a one-way function for each interval j.  But the key chain is 

used forwardly.  Initially, the sender broadcasts the first key that is digitally signed.  With that 

signature, the receivers confirms that the first key comes from the true sender.  Then, at  each 

interval, the sender broadcasts a message with a message authentication code (MAC); this MAC is 

output from a hash function which inputs the message and the key at that  interval [1].  As soon as a 

sensor knows that  key, it  decrypts that MAC to authenticate that the MAC comes from the true 

sender, which in turn confirm that the message itself comes from the true sender.  Notice that an 

adversary  may be monitoring the communication and uses the key to fabricate messages that 

control certain sensors.  Thus, the key for each interval j is revealed at the j+r interval, where the r-

intervals delay  would make an adversary be unable to fabricate an MAC in time.  This MAC is 

approximately 24 bytes per message of 30 bytes.  However, this protocol broadcasts the first 

message with a digital signature that is still too expensive for the sensor network.   
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The Tesla protocol has been further improved into the µTesla protocol [6] by bootstrapping 

the first message through an authenticated channel, avoiding the expensive digital signature.  

Though the µTesla protocol is considered feasible in the sensor network, it  is widely expected that 

its functions can be extended and its communication overhead can be further reduced so that a 

sensor battery can persist longer.  In general, the protocol is applied to a general case that a sensor 

can either compute the MAC to authenticate the message or just skip the MAC to see the message 

content.  In this paper, we propose a  C-µTesla  protocol for a specific case where a sensor wants to 

authenticate all messages , so that  we can reduce the overhead per message from 30 bytes to 4 

bytes.

We ask the sender to encrypt all messages without creating any MACs, so that a sensor 

authenticate the message by decrypting the encrypted message and see its content.  Each message 

adds a 4-bytes Cyclic Redundancy Check(CRC) [4] before encryption, so that  a fabricated message 

will not pass the CRC check after decryption.  Moreover, the new protocol does not allow an 

adversary  to put a fabricated sensor to hear any information from the sender while the earlier 

protocol allows.  For a possible application, consider that the Environment Bureau installs a set of 

sensors in a factory to monitor the pollution.  At a certain time, the bureau may remotely control 

the base station to send commands to these sensors, which then return the sensed information.  

Certainly, the bureau does not want the adversary (who owns that factory) to know that commands 

and put off the pollution then.  

In Section 2, we review the µTesla Protocol. In Section 3,  we propose the C-µTesla protocol 

for the first confidentiality problem.  In Section 4, our conclusions are presented. 

2.  The µTesla Protocol

Consider an example sensor network which has a sender (S) and four receivers (R1, R2, R3 

and R4.)  The sender is trusted by all receivers, those which may not trust each other, and each 

receiver trusts itself.  The sender wants to sequentially broadcast four messages m1, m2, m3 and m4 

to the receivers.  Thus, it  prepares a key chain [k0, k1, k2, k3, k4].  It picks k4 randomly  and 

computes  k3 = f(k4),  k2 = f(k3),  k1 = f(k2), and  k0= f(k1)  where f is a one-way function.  

Receivers R1, R2, R3 and R4 share distinct Secret keys X1, X2, X3, X4 with the receiver 

respectively.
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The µTesla protocol has two phases. In the first  (i.e., bootstrap) phase, the sender will send the 

first key  to each receiver personally, through the encryption of the Secret key  shared between them.  

Consider the example of receiver R2 .  R2 first sends a Nonce to the sender.  Then, the sender 

returns "k0, MAC(k0||Nonce, X2)" to R2, where "||" connects k0 and Nonce, and X2 is the Secret 

key between the receiver and the sender.  R2 confirms that the first key k0 comes from the true 

sender,  because it is encrypted by  the Secret key X2 which is known only to R2 and the sender.  

The Nonce is used to defend against an adversary from resending an earlier message. 

Formally, a receiver Rj may bootstrap  at any interval i (thus the first key is called ki) and 

needs some related information [6] (namely, T) to join the broadcasting group, thus the protocol 

steps are described as follows:

Rj--> S:  Nonce

S --> Rj:  ki ||T , MAC(ki || T || Nonce, Xj)

In the second (i.e., broadcast) phase, the sender will broadcast authenticated messages to all 

receivers.  The sender splits the time into six intervals and broadcasts the following messages: 

Interval 1:  m1, MAC(m1, k1)                Interval 2:  m2, MAC(m2, k2) 

Interval 3:  m3, MAC(m3, k3), k1           Interval 4:  m4, MAC(m4, k4), k2

Interval 5:                                  k3          Interval 6:                                  k4

At interval j (where j = 1, 2, 3, 4), the sender broadcasts  mj, MAC(mj, kj) to all receivers, 

where mj is the message and MAC(mj, kj) is a message authentication code of mj based on key kj.  

At interval j (where j =3, 4, 5, 6), the sender broadcast key kj-2 to all receivers.  Notice that each 

key is revealed two intervals later, where this delay is assumed to make an  adversary be unable to 

fabricate the MAC in time.

The messages at each interval promises the authentication and integrity properties.   At 

intervals 1 and 2, each receivers store the received message because they  have no keys to verify it.  

At interval 3, each receiver will see key k1.  The receiver has already known that k0 is used by the 

sender in the bootstrap phase.  It  then verifies that k0 = f(k1) by the one-way function f.  This one-

way function allows a receiver to verify  that k1 follow k0 in the key  chain, but it does not allow 

any adversary to compute k1 from k0.  If k0 = f(k1), MAC(m1, k1) will be authenticated to come 

from the true sender because k0 comes from the true sender.  The authentication property has thus 
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been established.  Each sensor also checks that MAC(m1, k1) is output from a hash function which 

inputs m1 and k1. If m1 is altered either by the adversary  or error during transmission, such a check 

will fail.  The integrity property has thus been established.  By going through intervals 4, 5 and 6, 

all messages will be authenticated.

Formally, a sender may reveal the key  after d intervals, thus the protocol step for interval j is 

described as follows: 

       S ->  R:   mj, MAC(mj, kj), kj-d    

      but the item "kj-d" is missed in the first d intervals and items "mj, MAC(mj, kj)" are missed in 

the last d intervals. 

3. The C-µTesla Protocol 

In Section 2, we have briefly  described the µTesla Protocol which contains the bootstrap and 

broadcast phases.  In this section, we will modify the protocol in both phases so that it can ensure 

that no adversaries can hear information from the sender by putting a fabricated receiver.  And we 

will show that it saves the communication overhead per message from 30 bytes to 4 bytes.

The µTesla protocol cannot defend against this attack in both phases.  As shown in Section 2, 

the sender sends  "ki || T ", "MAC(ki || X ||  Nonce)" to each receiver in the bootstrap phase.  At 

each interval of the broadcast phase, the sender broadcasts "mj, MAC(mj, kj), kj-d" to all receivers.  

Thus, an adversary  may put a fabricated receiver (or an instrument) to receive the wireless signal 

and then know  k0, mj and kj-d.   As mentioned in Section 1, knowing both information may corrupt 

the whole system.

We first modify the the bootstrap phase.  Formally, a receiver Rj may  bootstrap  at any interval 

i (thus the first key is ki) and needs some related information [6] (namely, T) to join the group.  The 

receiver also needs k0 for decryption.  Thus the new protocol steps are described as follows:   

Rj--> S:  Nonce

S --> Rj:  f(k0 ||ki  ||T||Nonce||CRC(k0 ||ki ||T||Nonce), Xj) where f is a symmetric 

encryption function and Xj is the Secret key between Rj and the sender.

That is, we encrypt the whole message by a Secret key Xj, so that the adversary  cannot see the 

message content.  The receiver encrypts the ciphertext by the Secret key  Xj and confirms that it is 
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sent from the true sender; no ones other than itself and the sender knows that key.  The 

authentication property has thus been achieved.  The message content includes key  ki,  k0 , related 

information T and the CRC of the former three items.   The CRC is used to ensure that the message 

encrypted content will not be altered during the transmission.  The integrity  property has thus been 

achieved.  

Second, we modify the protocol steps of the broadcast phase.  Consider that a sender may 

reveal the key d intervals later, the protocol step for interval j is described as follows: 

       S ->  R:   f(mj||CRC(mj), kj),  f(kj-d, k0)

where the item  f(kj-d, k0) is missed in the first  d intervals and the item f(mj||cheksum(mj), kj) is 

missed in the last d intervals. 

Consider the first item f(mj||CRC(mj), kj).  We concatenate message mj with its CRC to 

preserve the integrity property of the message content.  Then, we encrypt the whole message by 

key kj at interval j.  Notice that kj is chained from key ki which has already been authenticated, we 

can authenticate that the message comes from the true sender.   This encryption also ensures that 

the adversary could not install a fabricated receiver to see the message content, because he does not 

know  kj. Consider the second item  f(kj-d, k0).   We encrypt the key by key k0 of the key chain; this 

ensures that the key will not be revealed to any receiver outside the current broadcasting group. 

The example of the earlier section for the broadcast phase is modified into:  

Interval 1: f(m1||CRC(m1),  k1)                     Interval 2: f(m2||CRC(m2),  k2)

Interval 3: f(m3||CRC(m3), k3), f(k1, k0)       Interval 4: f(m4||CRC(m4), k4), f(k2, k0)

Interval 5:                                   f(k3, k0)      Interval 6:                                          f(k4, k0)

Each message is around 30 bytes, and we use a CRC of 4 bytes (yet its size is changable 

depending upon how severe the environment is.)  Thus, the new message is 34 bytes, and the 

encrypted message remains the same length.  We have reduced the communication overhead to 4 

bytes per message. 

4.  Conclusions
In this paper, we have modified the µTesla protocol for overcoming a new confidentiality 

problem and an authentication problem using an overhead of 4 bytes per message, in contrast to the 

earlier one which uses 24 bytes per message that overcomes only the authentication problem.   
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Currently, our mechanisms are used only for the base station broadcasting, but we are exploring 

their use for sensor broadcasting [10].
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