
A C-µTesla Protocol for Sensor Networks
Wen-Huei Chen

Department of Electronic Engineering, Fu Jen Catholic University
Taipei, Taiwan, R.O.C.

http://info.book678.idv.tw
mybook678@gmail.com

And Yu-Jen Chen
Department of Information Management, Chang Gung University

Taoyuan, Taiwan, R.O.C.
cyr@mail.cgu.edu.tw

1

A C-µTesla Protocol for Sensor Networks

Abstract

A sensor network has one or more base stations that talk to a large set of sensors, where the

sensor life depends a small battery that consumes most power during communication. Before this

network can be applied, many security problems must be solved, yet traditional security protocols

usually need a lot of communication overhead. Recently, the µTesla protocol was proposed to

address the authentication problem which ensures that no adversaries can impersonate the legal

sender to control the sensors. The protocol adds a 24-bytes MAC (Message Authentication Code)

to each 30-bytes message, where the MAC is based on the symmetric technique but can achieve

the asymmetric property. The protocol is applied to a general case that a sensor can either compute

the MAC to authenticate the message or just skip the MAC to see the message content.

In this paper, we propose a C-µTesla protocol for a specific case where a sensor wants to

authenticate all messages. We reduce the overhead from 30 bytes to 4 bytes, by asking the sender

to encrypt all messages without creating any MACs, so that a sensor authenticate messages through

decryption. And each message adds a 4-bytes Cyclic Redundancy Check (CRC) before encryption,

so that a modified encrypted message will not pass the CRC after decryption. Moreover, the C-

µTesla protocol introduces a new confidentiality property that allows no adversaries to hear

information of the sender through putting a fabricated sensor.

keywords. sensor network, security, protocol

1. Introduction
A sensor network has a large set of tiny sensors. These sensors form a routing forest with a

base station at the root of each tree. Each sensor routes its sensed data to the base station which

interfaces an outside network. The base station can either route commands to a sensor or broadcast

them to all sensors. Some sensors can broadcast data to its nearby sensors, though it is within a

limited range. In the future, such a network may be used for emergency response, energy

management, medical monitoring, logistics and battlefield management. Currently, a prototype

system has been implemented at UC Berkeley for heating and air-condition control. However,

many feasible protocols must be proposed before the sensor network can be widely used [8].

2

Authentication protocols are very important in the sensor network [7]. Sensors depend on

them to confirm that received messages are broadcasted from the legal sender (e.g., the base

station); otherwise, an adversary may fabricate messages to control sensors. However, each

sensor is a cheap and small-battery-powered device that has very limited computation and

communication resources. For example, the sensor developed by the SmartDust Project of UC

Berkeley has a 8-bit and 4-MHz CPU, 4.5 kbytes free memory space and 10 kbps bandwidth. As a

result, each message cannot be authenticated by the asymmetric digital signature [7], because it

needs a communication overhead of 50-1000 bytes per message as well as a large computation

time for creating and verifying the signature [5]. Nor can it be authenticated by the symmetric

method of Genario and Rohatgi [3] which reduces the computation time but keeps the

communication overhead at 1000 bytes per message. In the sensor network, the life time of a

sensor depends on a small battery where most power is consumed during communication. Thus,

reducing the communication overhead is much more concerned than reducing the computation

time. Rohatgi improves the method of [3] to use only 300 bytes per message [9], yet such an

overhead is still unacceptable in the sensor network.

Recently, the Tesla protocol has been proposed for authenticating a sequence of messages

with a light communication overhead [5]. The sender splits up the time into uniform intervals and

prepares a key for each interval. This chain of keys (i.e., key chain) is constructed backwardly

through a one-way function [2]. That is, the last key is picked randomly, and the j-th key is

computed from the (j+1)-th key by a one-way function for each interval j. But the key chain is

used forwardly. Initially, the sender broadcasts the first key that is digitally signed. With that

signature, the receivers confirms that the first key comes from the true sender. Then, at each

interval, the sender broadcasts a message with a message authentication code (MAC); this MAC is

output from a hash function which inputs the message and the key at that interval [1]. As soon as a

sensor knows that key, it decrypts that MAC to authenticate that the MAC comes from the true

sender, which in turn confirm that the message itself comes from the true sender. Notice that an

adversary may be monitoring the communication and uses the key to fabricate messages that

control certain sensors. Thus, the key for each interval j is revealed at the j+r interval, where the r-

intervals delay would make an adversary be unable to fabricate an MAC in time. This MAC is

approximately 24 bytes per message of 30 bytes. However, this protocol broadcasts the first

message with a digital signature that is still too expensive for the sensor network.

3

The Tesla protocol has been further improved into the µTesla protocol [6] by bootstrapping

the first message through an authenticated channel, avoiding the expensive digital signature.

Though the µTesla protocol is considered feasible in the sensor network, it is widely expected that

its functions can be extended and its communication overhead can be further reduced so that a

sensor battery can persist longer. In general, the protocol is applied to a general case that a sensor

can either compute the MAC to authenticate the message or just skip the MAC to see the message

content. In this paper, we propose a C-µTesla protocol for a specific case where a sensor wants to

authenticate all messages , so that we can reduce the overhead per message from 30 bytes to 4

bytes.

We ask the sender to encrypt all messages without creating any MACs, so that a sensor

authenticate the message by decrypting the encrypted message and see its content. Each message

adds a 4-bytes Cyclic Redundancy Check(CRC) [4] before encryption, so that a fabricated message

will not pass the CRC check after decryption. Moreover, the new protocol does not allow an

adversary to put a fabricated sensor to hear any information from the sender while the earlier

protocol allows. For a possible application, consider that the Environment Bureau installs a set of

sensors in a factory to monitor the pollution. At a certain time, the bureau may remotely control

the base station to send commands to these sensors, which then return the sensed information.

Certainly, the bureau does not want the adversary (who owns that factory) to know that commands

and put off the pollution then.

In Section 2, we review the µTesla Protocol. In Section 3, we propose the C-µTesla protocol

for the first confidentiality problem. In Section 4, our conclusions are presented.

2. The µTesla Protocol

Consider an example sensor network which has a sender (S) and four receivers (R1, R2, R3

and R4.) The sender is trusted by all receivers, those which may not trust each other, and each

receiver trusts itself. The sender wants to sequentially broadcast four messages m1, m2, m3 and m4

to the receivers. Thus, it prepares a key chain [k0, k1, k2, k3, k4]. It picks k4 randomly and

computes k3 = f(k4), k2 = f(k3), k1 = f(k2), and k0= f(k1) where f is a one-way function.

Receivers R1, R2, R3 and R4 share distinct Secret keys X1, X2, X3, X4 with the receiver

respectively.

4

The µTesla protocol has two phases. In the first (i.e., bootstrap) phase, the sender will send the

first key to each receiver personally, through the encryption of the Secret key shared between them.

Consider the example of receiver R2 . R2 first sends a Nonce to the sender. Then, the sender

returns "k0, MAC(k0||Nonce, X2)" to R2, where "||" connects k0 and Nonce, and X2 is the Secret

key between the receiver and the sender. R2 confirms that the first key k0 comes from the true

sender, because it is encrypted by the Secret key X2 which is known only to R2 and the sender.

The Nonce is used to defend against an adversary from resending an earlier message.

Formally, a receiver Rj may bootstrap at any interval i (thus the first key is called ki) and

needs some related information [6] (namely, T) to join the broadcasting group, thus the protocol

steps are described as follows:

Rj--> S: Nonce

S --> Rj: ki ||T , MAC(ki || T || Nonce, Xj)

In the second (i.e., broadcast) phase, the sender will broadcast authenticated messages to all

receivers. The sender splits the time into six intervals and broadcasts the following messages:

Interval 1: m1, MAC(m1, k1) Interval 2: m2, MAC(m2, k2)

Interval 3: m3, MAC(m3, k3), k1 Interval 4: m4, MAC(m4, k4), k2

Interval 5: k3 Interval 6: k4

At interval j (where j = 1, 2, 3, 4), the sender broadcasts mj, MAC(mj, kj) to all receivers,

where mj is the message and MAC(mj, kj) is a message authentication code of mj based on key kj.

At interval j (where j =3, 4, 5, 6), the sender broadcast key kj-2 to all receivers. Notice that each

key is revealed two intervals later, where this delay is assumed to make an adversary be unable to

fabricate the MAC in time.

The messages at each interval promises the authentication and integrity properties. At

intervals 1 and 2, each receivers store the received message because they have no keys to verify it.

At interval 3, each receiver will see key k1. The receiver has already known that k0 is used by the

sender in the bootstrap phase. It then verifies that k0 = f(k1) by the one-way function f. This one-

way function allows a receiver to verify that k1 follow k0 in the key chain, but it does not allow

any adversary to compute k1 from k0. If k0 = f(k1), MAC(m1, k1) will be authenticated to come

from the true sender because k0 comes from the true sender. The authentication property has thus

5

been established. Each sensor also checks that MAC(m1, k1) is output from a hash function which

inputs m1 and k1. If m1 is altered either by the adversary or error during transmission, such a check

will fail. The integrity property has thus been established. By going through intervals 4, 5 and 6,

all messages will be authenticated.

Formally, a sender may reveal the key after d intervals, thus the protocol step for interval j is

described as follows:

 S -> R: mj, MAC(mj, kj), kj-d

 but the item "kj-d" is missed in the first d intervals and items "mj, MAC(mj, kj)" are missed in

the last d intervals.

3. The C-µTesla Protocol

In Section 2, we have briefly described the µTesla Protocol which contains the bootstrap and

broadcast phases. In this section, we will modify the protocol in both phases so that it can ensure

that no adversaries can hear information from the sender by putting a fabricated receiver. And we

will show that it saves the communication overhead per message from 30 bytes to 4 bytes.

The µTesla protocol cannot defend against this attack in both phases. As shown in Section 2,

the sender sends "ki || T ", "MAC(ki || X || Nonce)" to each receiver in the bootstrap phase. At

each interval of the broadcast phase, the sender broadcasts "mj, MAC(mj, kj), kj-d" to all receivers.

Thus, an adversary may put a fabricated receiver (or an instrument) to receive the wireless signal

and then know k0, mj and kj-d. As mentioned in Section 1, knowing both information may corrupt

the whole system.

We first modify the the bootstrap phase. Formally, a receiver Rj may bootstrap at any interval

i (thus the first key is ki) and needs some related information [6] (namely, T) to join the group. The

receiver also needs k0 for decryption. Thus the new protocol steps are described as follows:

Rj--> S: Nonce

S --> Rj: f(k0 ||ki ||T||Nonce||CRC(k0 ||ki ||T||Nonce), Xj) where f is a symmetric

encryption function and Xj is the Secret key between Rj and the sender.

That is, we encrypt the whole message by a Secret key Xj, so that the adversary cannot see the

message content. The receiver encrypts the ciphertext by the Secret key Xj and confirms that it is

6

sent from the true sender; no ones other than itself and the sender knows that key. The

authentication property has thus been achieved. The message content includes key ki, k0 , related

information T and the CRC of the former three items. The CRC is used to ensure that the message

encrypted content will not be altered during the transmission. The integrity property has thus been

achieved.

Second, we modify the protocol steps of the broadcast phase. Consider that a sender may

reveal the key d intervals later, the protocol step for interval j is described as follows:

 S -> R: f(mj||CRC(mj), kj), f(kj-d, k0)

where the item f(kj-d, k0) is missed in the first d intervals and the item f(mj||cheksum(mj), kj) is

missed in the last d intervals.

Consider the first item f(mj||CRC(mj), kj). We concatenate message mj with its CRC to

preserve the integrity property of the message content. Then, we encrypt the whole message by

key kj at interval j. Notice that kj is chained from key ki which has already been authenticated, we

can authenticate that the message comes from the true sender. This encryption also ensures that

the adversary could not install a fabricated receiver to see the message content, because he does not

know kj. Consider the second item f(kj-d, k0). We encrypt the key by key k0 of the key chain; this

ensures that the key will not be revealed to any receiver outside the current broadcasting group.

The example of the earlier section for the broadcast phase is modified into:

Interval 1: f(m1||CRC(m1), k1) Interval 2: f(m2||CRC(m2), k2)

Interval 3: f(m3||CRC(m3), k3), f(k1, k0) Interval 4: f(m4||CRC(m4), k4), f(k2, k0)

Interval 5: f(k3, k0) Interval 6: f(k4, k0)

Each message is around 30 bytes, and we use a CRC of 4 bytes (yet its size is changable

depending upon how severe the environment is.) Thus, the new message is 34 bytes, and the

encrypted message remains the same length. We have reduced the communication overhead to 4

bytes per message.

4. Conclusions
In this paper, we have modified the µTesla protocol for overcoming a new confidentiality

problem and an authentication problem using an overhead of 4 bytes per message, in contrast to the

earlier one which uses 24 bytes per message that overcomes only the authentication problem.

7

Currently, our mechanisms are used only for the base station broadcasting, but we are exploring

their use for sensor broadcasting [10].

References
[1] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor and B. Pinkas, "Multicast security: a

taxonomy and some efficient constructions," IEEE INFOCOM, 1999, March 1999.

[2] M. Jakobsson, "Fractal hash sequence representation and traversal." IEEE Symposium on

Information Theory, July 2002, pp. 437-444.

[3] R. Gennaro and P. Rohatgi, "How to sign digital streams, in Advances in Cryptology - Crypto'

97," Lecture Notes in Computer Science, Vol. 1294, 1997, pp. 180-197.

[4] S. Lin and D. J. Costello, Error Control Coding: Foundementals and Applications, Prentice

Hall, 2nd Edition, 2004.

[5] A. Perrig, R. Canetti, J. D. Tygar and D. Song, "The Tesla Broadcast Authentication Protocol,"

RSA Crypto Bytes, Summer, 2002.

[6] A. Perrig, R. Szeczyk, J. D. Tygar, V. Wen and D. E. Culler, "SPINS: Security Protocols for

Sensor networks," Wireless Networks, Vol. 8, 2002, pp. 521-534.

[7] C. P. Pfleeger, Security in Computing, 2nd Edition, Prentice-Hall Inc., New Jersey, U.S.A.,

1997.

[8] K. S. J, Pister, J. M. Kahn and B. E. Boser, "Smart dust: wireless networks of millimeter-scale

sensor nodes," http://robotics.eecs.berkeley.edu/~pister/SmartDust/, 1999.

[9] P. Rohatgi, "A compact and fast hybrid signature scheme for multicast packet authentication,"

ACM Conference on Computer and Communication Security, Vol. 21, No.2, 1978, pp. 120-126.

[10] W. H. Chen and Y. R. Chen, "A bootstrapping scheme for inter-sensor authentication within

sensor networks," IEEE Communication Letters, Vol. 9, No. 10, 2005.

8

